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Abstract
Employing Hirota’s method, a class of soliton solutions for the N = 2 super
mKdV equations is proposed in terms of a single Grassmann parameter. Such
solutions are shown to satisfy two copies of N = 1 supersymmetric mKdV
equations connected by nontrivial algebraic identities. Using the super Miura
transformation, we obtain solutions of the N = 2 super KdV equations. These
are shown to generalize solutions derived previously. By using the mKdV/sinh-
Gordon hierarchy properties we generate the solutions of the N = 2 super
sinh-Gordon as well.

PACS numbers: 02.30.Ik, 11.30.Pb

The supersymmetric N = 2 Sinh-Gordon model was first introduced in [1, 2]. Moreover, in
[1] the supersymmetric N = 2 mKdV and its Miura transformation to the supersymmetric
N = 2 KdV was also discussed.

In an algebraic approach, integrable hierarchies are defined by decomposition of an affine
Lie algebra G into graded subspaces by a grading operator Q and further specified by a constant
grade one element E. Such a graded structure provides a systematic way of obtaining solutions
of the zero curvature equation for a corresponding Lax operator. For each grade one finds
a solution, which corresponds to a different time evolution t = tk and hence to a different
nonlinear evolution equation. In particular, supersymmetric integrable hierarchies require
the decomposition of a twisted affine superalgebra. In [3, 4], the half-integer decomposition
of affine ŝl(2, 2) was discussed and the equations of motion for the N = 2 super sinh-
Gordon and mKdV were derived and shown to correspond to different time evolutions of
the same hierarchy. The algebraic structure behind the hierarchy ensures universality
among the solutions of different equations of motion. In fact, apart from changes of field
variables, the spacetime dependence of the (2n + 1) th member of the mKdV/sinh-Gordon
hierarchy is given by

ρ±(x, t2n+1) = exp(±(2γ x + 2γ 2n+1t2n+1)) (1)
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and the soliton solutions of different equations of motion within the same hierarchy differ only
by its spacetime form specified by (1) while maintaining a similar functional form.

In [6], a class of soliton solutions for the supersymmetric N = 2 KdV with one
Grassmannian parameter was obtained employing Hirota’s method. In this paper, we extend
the construction of soliton solutions to the supersymmetric N = 2 mKdV model. The
advantage of the method is that it also yields solutions to the N = 2 super sinh-Gordon model
as the spacetime dependence of solutions is provided by universality of solutions ensured by
the fact that both models are embedded within the same hierarchy.

By employing the super Miura transformation we arrive at a more general class of N = 2
super KdV equation which for a particular choice of parameters agrees with that obtained in
[6].

The N = 2 super mKdV model is described by the t = t3 flow of the affine ŝl(2, 2)

hierarchy (see [3]):

4∂t3ψ1 = ∂3
xψ1 − 3

(
u2

1 + u2
3

)
∂xψ1 − 3

2∂x

(
u2

1 + u2
3

)
ψ1 − 3∂x(u1u3)ψ3

4∂t3u1 = ∂3
xu1 + ∂x

[−2u3
1 + 3u1(ψ1∂xψ1 − ψ3∂xψ3) − 3u3∂x(ψ1ψ3)

]
4∂t3ψ3 = ∂3

xψ3 − 3
(
u2

1 + u2
3

)
∂xψ3 − 3

2∂x

(
u2

1 + u2
3

)
ψ3 − 3∂x(u1u3)ψ1

4∂t3u3 = ∂3
xu3 + ∂x

[−2u3
3 − 3u3(ψ1∂xψ1 − ψ3∂xψ3) + 3u1∂x(ψ1ψ3)

]
.

(2)

The N = 2 super sinh-Gordon model belongs to the same hierarchy but with the flow parameter
t = t−1 for which one finds the following evolution equations:

∂t−1∂x(φ1 ± φ3) = 4 sinh(φ1 ± φ3) cosh(φ1 ∓ φ3) − 4(ψ1 ± ψ3)(ψ̄1 ± ψ̄3) sinh(φ1 ∓ φ3),

∂t−1(ψ1 ± ψ3) = −2(ψ̄1 ∓ ψ̄3) cosh(φ1 ± φ3), (3)

where ψ̄1,3 are auxiliary fields satisfying

∂x(ψ̄1 ± ψ̄3) = −2(ψ1 ∓ ψ3) cosh(φ1 ± φ3). (4)

The fact that both integrable models belong to the same hierarchy is expressed by the relation

ui = −∂xφi, i = 1, 3. (5)

Define now the superfields

χ1 = ψ1 + θu1, χ3 = ψ3 − θu3, (6)

and the superderivatives

D = ∂θ + θ∂x, D2 = ∂x. (7)

The N = 2 supersymmetric mKdV equations can be recast as

4∂t3χ1 = ∂3
xχ1 + D[−2(Dχ1)

3 + 3(χ1∂xχ1 − χ3∂xχ3)Dχ1 + 3Dχ3∂x(χ1χ3)],

4∂t3χ3 = ∂3
xχ3 + D[−2(Dχ3)

3 − 3(χ1∂xχ1 − χ3∂xχ3)Dχ3 − 3Dχ1∂x(χ1χ3)].
(8)

We now introduce the following tau functions:

χ1 = D ln

(
τ1

τ2

)
, χ3 = D ln

(
τ3

τ4

)
(9)

and Hirota’s derivatives [5]

SDt3(τ1.τ1) = 2
(
D∂t3τ1τ1 − Dτ1∂t3τ1

)
,

SDx(τ1.τ1) = 2(D∂xτ1τ1 − Dτ1∂xτ1),

SD3
x(τ1.τ1) = 2

(
D∂3

x τ1τ1 − 3D∂2
x τ1∂xτ1 + 3D∂xτ1∂

2
x τ1 − Dτ1∂

3
x τ1

)
,

D2
x(τ1.τ2) = ∂2

x τ1τ2 − 2∂xτ1∂xτ2 + τ1∂
2
x τ2,

D2
x(τ1.τ1) = 2

[
∂2
x τ1τ1 − (∂xτ1)

2
]
,

D̄(τa.τb) = Dτa∂xτb − Dτb∂xτa, a �= b = 1, 2, 3, 4.

(10)

2



J. Phys. A: Math. Theor. 41 (2008) 312001 Fast Track Communication

The first of equations in (8) becomes

2

[
SDt3(τ1.τ1)

τ 2
1

− SDt3(τ2.τ2)

τ 2
2

]
= SD3

x(τ1.τ1)

2τ 2
1

− SD3
x(τ2.τ2)

2τ 2
2

− 3

2

[
D2

x(τ1.τ2)

τ1τ2
+

D2
x(τ3.τ4)

τ3τ4

] [
SDx(τ1.τ1)

τ 2
1

− SDx(τ2.τ2)

τ 2
2

]

− 3

2

[
D2

x(τ1.τ1)

τ 2
1

− D2
x(τ2.τ2)

τ 2
2

] [
SDx(τ1.τ2)

τ1τ2
− SDx(τ3.τ4)

τ3τ4

]

+
3

4

[
D2

x(τ3.τ3)

τ 2
3

SDx(τ1.τ1)

τ 2
1

− D2
x(τ1.τ1)

τ 2
1

SDx(τ3.τ3)

τ 2
3

]

− 3

4

[
D2

x(τ3.τ3)

τ 2
3

SDx(τ2.τ2)

τ 2
2

− D2
x(τ2.τ2)

τ 2
2

SDx(τ3.τ3)

τ 2
3

]

+
3

4

[
D2

x(τ4.τ4)

τ 2
4

SDx(τ1.τ1)

τ 2
1

− D2
x(τ1.τ1)

τ 2
1

SDx(τ4.τ4)

τ 2
4

]

− 3

4

[
D2

x(τ4.τ4)

τ 2
4

SDx(τ2.τ2)

τ 2
2

− D2
x(τ2.τ2)

τ 2
2

SDx(τ4.τ4)

τ 2
4

]

+
3

2

(
D2

x(τ3.τ3)

τ 2
3

− D2
x(τ4.τ4)

τ 2
4

)

×
(

D̄(τ3.τ1)

τ3τ1
− D̄(τ3.τ2)

τ3τ2
− D̄(τ4.τ1)

τ4τ1
+

D̄(τ4.τ2)

τ4τ2

)
. (11)

The second of equations in (8) is obtained through the transformation τ1 ↔ τ3 and τ2 ↔ τ4.
We will discuss a class of solutions of equation (11) satisfying(

4SDt3 − SD3
x

)
(τa.τa) = 0, for a = 1, 2, 3, 4

D2
x(τ1.τ2) = 0

D2
x(τ3.τ4) = 0

SDx(τ1.τ2) = 0

SDx(τ3.τ4) = 0

D2
x(τa.τa)SDx(τb.τb) − D2

x(τb.τb)SDx(τa.τa) = 0, for a = 3, 4 b = 1, 2

D̄(τa.τb) = 0, for a = 3, 4 b = 1, 2.

(12)

Let all τi, i = 1, . . . , 4, be of the form 1+	 where 	 is a combination of exponential functions
of η̃a = 2kax + wat + ζaθ, a = 1, . . . , 4, with constant parameters ka, wa and Grassmann
parameters ζa . In order to illustrate the method below we consider two explicit examples.

• Two-parameter solution
Consider the following ansatz

τ1 = 1 + α1 eη̃1 , τ2 = 1 + α2 eη̃2 ,

τ3 = 1 + α3 eη̃3 , τ4 = 1 + α4 eη̃4 .
(13)
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Using the relations,

SDn
x(e

η̃1 .eη̃2) = (2k1 − 2k2)
n[−(ζ1 − ζ2) + 2θ(k1 − k2)] eη̃1+η̃2 ,

Dn
x(e

η̃1 .eη̃2) = (2k1 − 2k2)
n eη̃1+η̃2 ,

SDn
t3
(eη̃1 .eη̃2) = (ω1 − ω2)

n[−(ζ1 − ζ2) + 2θ(k1 − k2)] eη̃1+η̃2 ,

D̄(eη̃1 .eη̃2) = 2(−ζ2k1 + ζ1k2) eη̃1+η̃2 ,

(14)

we verify that equations (12) are satisfied if

k2 = k1, k4 = k3,

ζ2 = ζ1, ζ4 = ζ3,

ω1 = ω2 = 2k3
1, ω3 = ω4 = 2k3

3,

α2 = −α1, α4 = −α3,

ζ3 = k3

k1
ζ1.

(15)

Explicitly, we find the following one soliton solution,

u1 = 2k1α1 eη1

(
1

1 + α1 eη1
+

1

1 − α1 eη1

)
,

u3 = −2k3α3 eη3

(
1

1 + α3 eη3
+

1

1 − α3 eη3

)
,

ψ1 = −ζ1α1 eη1

(
1

1 + α1 eη1
+

1

1 − α1 eη1

)
,

ψ3 = −ζ1
k3

k1
α3 eη3

(
1

1 + α3 eη3
+

1

1 − α3 eη3

)
,

(16)

where ζ1 denotes the single Grassmann parameter and

ηa = 2
(
kax + k3

at3
)
, a = 1, 3. (17)

• Four-parameter solution
Consider the following ansatz:

τ1 = 1 + α1 eη̃1 + α2 eη̃2 + α1α2A1,2 eη̃1+η̃2 ,

τ2 = 1 + β1 eη̃1 + β2 eη̃2 + β1β2B1,2 eη̃1+η̃2 ,

τ3 = 1 + α3 eη̃3 + α4 eη̃4 + α3α4A3,4 eη̃3+η̃4 ,

τ4 = 1 + β3 eη̃3 + β4 eη̃4 + β3β4B3,4 eη̃3+η̃4 .

(18)

Substituting into equation (12), we find

βs = −αs, ωs = 2k3
s , s = 1, 2, 3, 4 (19)

Bi,j = Ai,j = (ki − kj )
2

(ki + kj )2
, klζm = kmζl, (20)

for (i = 1, j = 2), (i = 3, j = 4) and l, m = 1, 2, 3, 4. Conditions (15) and (20) justify
the presence of a single Grassmann parameter ζ1. In components we have

τk = τ a
k + τ b

k ζ1θ, k = 1, 2, 3, 4 (21)

4
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for which we obtain explicitly the following two-soliton solution,

τ a
1 = 1 + α1 eη1 + α2 eη2 + α1α2A1,2 eη1+η2 ,

τ a
2 = 1 − α1 eη1 − α2 eη2 + α1α2A1,2 eη1+η2 ,

τ a
3 = 1 + α3 eη3 + α4 eη4 + α3α4A3,4 eη3+η4 ,

τ a
4 = 1 − α3 eη3 − α4 eη4 + α3α4A3,4 eη3+η4 ,

τ b
1 = 1

k1
(α1k1 eη1 + α2k2 eη2 + α1α2(k1 + k2)A1,2 eη1+η2),

τ b
2 = 1

k1
(−α1k1 eη1 − α2k2 eη2 + α1α2(k1 + k2)A1,2 eη1+η2),

τ b
3 = 1

k1
(α3k3 eη3 + α4k4 eη4 + α3α4(k3 + k4)A3,4 eη3+η4),

τ b
4 = 1

k1
(−α3k3 eη3 − α4k4 eη4 + α3α4(k3 + k4)A3,4 eη3+η4),

(22)

where ζ1 is a constant fermionic parameter and

ηa = 2
(
kax + k3

at3
)
, a = 1, 2, 3, 4. (23)

From (6) and (9) we find

u1 = ∂x ln

(
τ a

1

τ a
2

)
, u3 = −∂x ln

(
τ a

3

τ a
4

)
,

ψ1 = ζ1

(
τ b

2

τ a
2

− τ b
1

τ a
1

)
, ψ3 = ζ1

(
τ b

4

τ a
4

− τ b
3

τ a
3

)
.

(24)

Equation (24) together with equations (22)–(23) provides a class of solutions for fields
(u1, ψ1) and (u3, ψ3), which satisfy both N = 1 and N = 2 super mKdV equations of motion
since they also satisfy the nontrivial relations like

u2
3∂xψ1 + 1

2∂x

(
u2

3

)
ψ1 + ∂x(u1u3)ψ3 = 0,

u2
1∂xψ3 + 1

2∂x

(
u2

1

)
ψ3 + ∂x(u1u3)ψ1 = 0.

(25)

In general, identities (25) follow directly from conditions (12).
The generalization to include more solitons follows directly by extending equation (18)

involving terms like

τi = 1 +
∑

j

Ai
j eη̃j +

∑
jk

Bi
jk eη̃j eη̃k + · · ·

where the coefficients Ai
j , B

i
jk, · · · are determined by equation (12).

We now discuss the corresponding soliton solutions for the N = 2 super sinh-Gordon
(3) and (4). Following the arguments of [3], where it was shown that the mKdV and sinh-
Gordon models belong to the same integrable hierarchy, and taking into account the spacetime
dependence given in equation (1) we relate solutions of both models with each other by
replacing in (23)

k3
at3 → ka

−1t−1, i.e., ηa = 2
(
kax + k−1

a t−1
)

(26)

and ui = −∂xφi, i = 1, 3. Henceforth

φ1 = −ln

(
τ a

1

τ a
2

)
, φ3 = ln

(
τ a

3

τ a
4

)
. (27)

5
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Plugging (22) in (27) and taking into account (26) we obtain fields φ1, φ3. The fermionic
fields ψ1 and ψ3 are obtained from (24) with the spacetime dependence given by (26). The
auxiliary fields ψ̄1 and ψ̄3 are then solved by the second of equations (3) yielding

ψ̄1 = 1

2

[(
∂t−1ψ3

)
shφ1shφ3 − (

∂t−1ψ1
)
chφ1chφ3

(chφ1chφ3)2 − (shφ1shφ3)2

]
,

ψ̄3 = 1

2

[(
∂t−1ψ3

)
chφ1chφ3 − (

∂t−1ψ1
)
shφ1shφ3

(chφ1chφ3)2 − (shφ1shφ3)2

]
.

(28)

It is interesting to consider as a particular example, the case of α1 = α3 = 0 for which we
obtain

ψ̄1 = 2ζ1 eη2α2
(
1 + e2η4α2

4

)
k1

(−1 + e2η2α2
2

)(−1 + e2η4α2
4

) ,

ψ̄3 = − 2ζ1 eη4
(
1 + e2η2α2

2

)
α4

k1
(−1 + e2η2α2

2

)(−1 + e2η4α2
4

) .

(29)

We have explicitly verified that the formulae (22) with the evolution parameter t−1 given by
(26) and general values of parameters αi, i = 1, 2, 3, 4, in equation (28) indeed gives the
solutions to the N = 2 super sinh-Gordon equations (3).

We now relate the above solutions with the solutions of the super N = 2 KdV equation.
Define two spin-1/2 superfields �, i = 1, 2, as

�1 = χ1 + χ3, �2 = χ1 − χ3. (30)

Equation (8) gives

4∂t3�1 = D
[
∂2
xD�1 + 3�1∂x�2D�2 − 1

2 (D�1)
3 − 3

2D�1(D�2)
2
]
,

4∂t3�2 = D
[
∂2
xD�2 + 3�2∂x�1D�1 − 1

2 (D�2)
3 − 3

2D�2(D�1)
2
]
.

(31)

These equations, after time rescaling t3 → −4t3, become equations (4.6) of [1]. Introducing
the N = 2 super Miura transformation given in equation (3.9) of [1], i.e.

U = D(�1 + �2) − �1�2 = 2Dχ1 + 2χ1χ3,

V = ∂x�2 − �2D�1 = ∂xχ1 − ∂xχ3 − χ1Dχ1 − χ1Dχ3 + χ3Dχ1 + χ3Dχ3
(32)

yields the N = 2 super KdV equations of [1],

4∂t3U = ∂x

[
∂2
xU + 3(DU)V − 1

2U 3
]
,

4∂t3V = ∂x

[
∂2
xV − 3V (DV ) + 3V ∂xU − 3

2V U 2
] (33)

for the spin 1 and 3/2 superfields, respectively. Let the U and V be decomposed as follows,

U = Ub + θUf V = V f + θV b,

with indices b and f referring to boson and fermion components, respectively.
Using (6) on the rhs of (32) we obtain

Ub = 2(u1 + ψ1ψ3) Uf = 2(∂xψ1 + u3ψ1 + u1ψ3) (34)

and

V f = ∂x(ψ1 − ψ3) − (u1 − u3)(ψ1 − ψ3)

V b = ∂x(u1 + u3) − (
u2

1 − u2
3

)
+ (ψ1 − ψ3)∂x(ψ1 + ψ3).

(35)

6
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As an example we set α2 = α4 = 0 in equations (22). Then equations (34) and (35) give

Ub = 8 eη1k1α1

1 − e2η1α1
2
,

Uf = −8ζ1 eη1k1α1
(
1 + e2η1α2

1

)
(−1 + e2η1α2

1

)2 ,

V b = −8
(
eη3k2

3

(
1 + eη1α1

)2
α3 − eη1k2

1α1
(
1 + eη3α3

)2)(
1 + eη1α1

)2(
1 + eη3α3

)2 ,

V f = 4ζ1
(
eη3k2

3

(
1 + eη1α1

)2
α3 − eη1k2

1α1
(
1 + eη3α3

)2)
k1

(
1 + eη1α1

)2(
1 + eη3α3

)2 .

(36)

Since we consider the class of solutions with only one Grassmann constant parameter,
the fermionic quadratic terms in (35) vanish identically. Furthermore, for the solutions given
in (16) and (22) since they satisfy u3ψ1 + u1ψ3 = 0 (which can be checked in general using
(12)), it follows that Ub and Uf depend only on α1, α2 and V b and V f depend upon α1, α2, α4

and α4. In particular, for α3 = α4 = 0 (with t3 → −4t3, k → k/2), using algebraic computer
methods, we have checked that our solutions agree with those found in [6]. The other solutions,
such as, for example those given in equation (36) with at least one of the parameters α3, α4

being different from zero are, as far as we are aware, new solutions.
It would be interesting to generalize this construction to involve multiple Grassmann

constant parameters. In analogy with what was done for the corresponding N = 1 hierarchy
in [7], this may be accomplished in terms of vertex operators and representations of the ŝl(2, 2)

affine algebra.
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